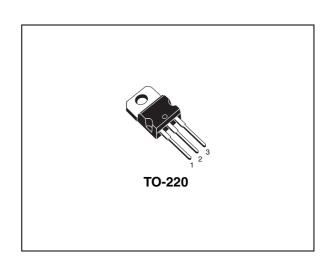


STP30NM30N

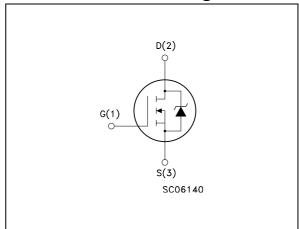
N-channel 300V - 0.078Ω - 30A - TO-220 Ultra low gate charge MDmesh™ II Power MOSFET

Features

Туре	V _{DSS}	R _{DS(on)}	I _D
STP30NM30N	300V	<0.090Ω	30A


- Worldwide lowest gate charge
- High dv/dt avalanche capabilities
- Low input capacitance
- Low gate resistance

Description


This 300V Power MOSFET with a new advanced layout brings all unique advantages of MDmesh[™] technology to medium voltages. The device exhibits worldwide lowest gate charge for any given on-resistance. Its use is therefore ideal as primary side switch for DC-DC converters as well as for switch mode power supply allowing higher efficiencies and system miniaturization.

Application

■ Switching application

Internal schematic diagram

Order code

Part number	Marking	Package	Packaging
STP30NM30N	P30NM30N	TO-220	Tube

Contents STP30NM30N

Contents

1	Electrical ratings	. 3
2	Electrical characteristics	. 4
	2.1 Electrical characteristics (curves)	5
3	Test circuits	. 8
4	Package mechanical data	. 9
5	Revision history	11

STP30NM30N Electrical ratings

1 Electrical ratings

Table 1. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage (V _{GS} = 0)	300	V
V _{GS}	Gate- source voltage	± 20	V
I _D	Drain current (continuous) at T _C = 25°C	30	Α
I _D	Drain current (continuous) at T _C = 100°C	18.5	Α
I _{DM} ⁽¹⁾	Drain current (pulsed)	120	Α
P _{TOT}	Total dissipation at T _C = 25°C	160	W
	Derating factor	1.28	W/°C
dv/dt	Peak diode recovery voltage slope	18	V/ns
T _j T _{stg}	Operating junction temperature Storage temperature	-65 to 150	°C

^{1.} $I_{SD} \le 30A$, di/dt $\le 400A/\mu s$, $V_{DD}=80\%V_{(BRDSS)}$

Table 2. Thermal data

Symbol	Parameter	Value	Unit
Rthj-case	Thermal resistance junction-case max	0.78	°C/W
Rthj-amb	Thermal resistance junction-ambient max	62.5	°C/W

Table 3. Avalanche characteristics

Symbol	Parameter	Max value	Unit
I _{AR}	Avalanche current, repetitive or not-repetitive (pulse width limited by T_j max)	15	Α
E _{AS}	Single pulse avalanche energy (starting $T_j = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V)	900	mJ

Electrical characteristics STP30NM30N

2 Electrical characteristics

(Tcase =25°C unless otherwise specified)

Table 4. On /off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$I_D = 1$ mA, $V_{GS} = 0$	300			V
I _{DSS}	Zero gate voltage drain current (V _{GS} = 0)	V_{DS} = Max rating V_{DS} = Max rating, T_{C} =125°C			1 100	μ Α μ Α
I _{GSS}	Gate-body leakage current (V _{DS} = 0)	V _{GS} = ± 20V			100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2	3	4	V
R _{DS(on}	Static drain-source on resistance	$V_{GS} = 10V, I_D = 15A$		0.075	0.090	Ω

Table 5. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
9 _{fs} ⁽¹⁾	Forward transconductance	V _{DS} = 15V, I _D = 15A		9		S
C _{iss} C _{oss} C _{rss}	Input capacitance Output capacitance Reverse transfer capacitance	$V_{DS} = 50V$, $f = 1$ MHz, $V_{GS} = 0$		2500 500 70		pF pF pF
R _g	Gate input resistance	f=1MHz Gate DC Bias=0 Test signal level=20mV open drain		1.7		Ω
Q _g Q _{gs} Q _{gd}	Total gate charge Gate-source charge Gate-drain charge	V_{DD} = 240V, I_{D} = 30A, V_{GS} = 10V (see Figure 13)		75 15 40		nC nC nC

^{1.} Pulsed: Pulse duration = 300 μs, duty cycle 1.5%

Table 6. Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max	Unit
t _{d(on)}	Turn-on delay time	V 150V I 15A		25		ns
t _r	Rise time	$V_{DD} = 150V, I_D = 15A,$ $R_G = 4.7\Omega, V_{GS} = 10V$		25		ns
t _{d(off)}	Turn-off-delay time	(see Figure 12)		65		ns
t _f	Fall time	(See Figure 12)		25		ns

Table 7. Source drain diode

Symbol	Parameter	Test conditions	Min	Тур.	Max	Unit
I _{SD}	Source-drain current				30	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)				120	Α
V _{SD} (2)	Forward on voltage	$I_{SD} = 30A, V_{GS} = 0$			1.3	V
t _{rr}	Reverse recovery time	$I_{SD} = 30A$, di/dt = 100A/ μ s		350		ns
Q_{rr}	Reverse recovery charge	V _{DD} = 200V Tj = 25°C		5		μC
I _{RRM}	Reverse recovery current	(see Figure 17)		30		Α

^{1.} Pulse width limited by safe operating area

^{2.} Pulsed: pulse duration = 300µs, duty cycle 1.5%

Electrical characteristics STP30NM30N

2.1 Electrical characteristics (curves)

Figure 1. Safe operating area

Figure 2. Thermal impedance

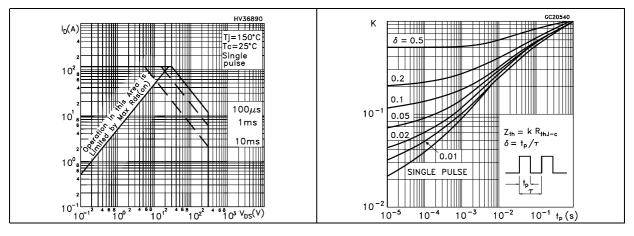


Figure 3. Output characteristics

Figure 4. Transfer characteristics

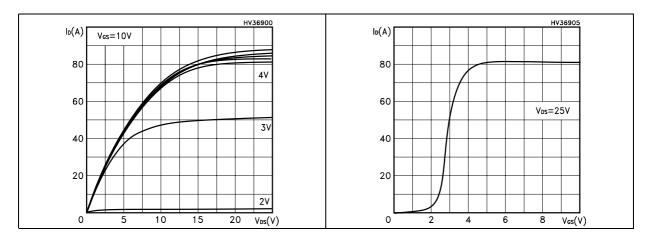
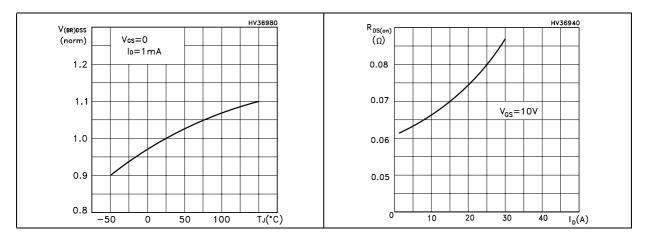



Figure 5. Normalized B_{VDSS} vs temperature

Figure 6. Static drain-source on resistance

0

20

HV36910 C(pF) Vgs(V) V_{GS}=10V f=1MHz Vgs=0V ID=30A VDD=240V 10000 12 8000 9 6000 6 4000 3 2000

Figure 7. Gate charge vs gate-source voltage Figure 8. Capacitance variations

Figure 9. Normalized gate threshold voltage vs temperature

40

80

Qg(nC)

Figure 10. Normalized on resistance vs temperature

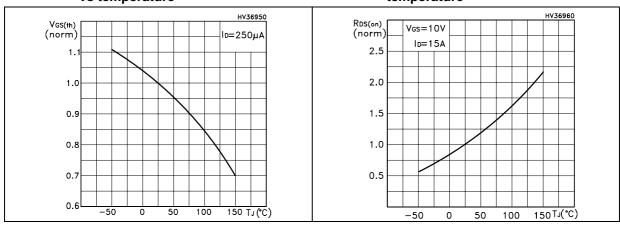
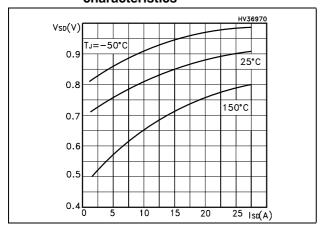



Figure 11. Source-drain diode forward characteristics

577

Test circuits STP30NM30N

3 Test circuits

Figure 12. Switching times test circuit for resistive load

Figure 13. Gate charge test circuit

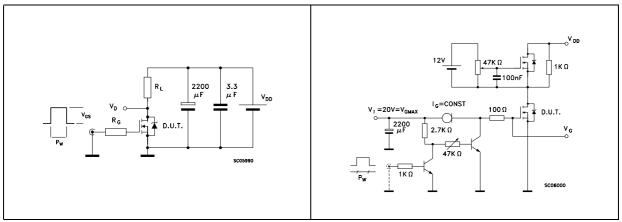


Figure 14. Test circuit for inductive load switching and diode recovery times

Figure 15. Unclamped inductive load test circuit

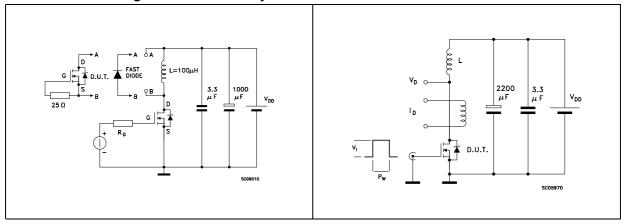
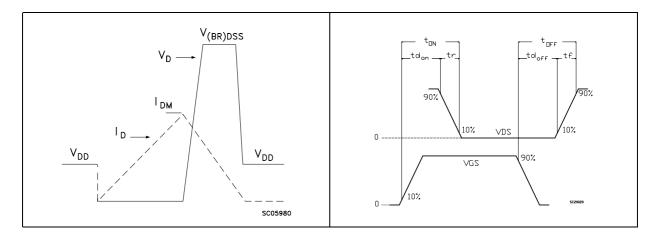
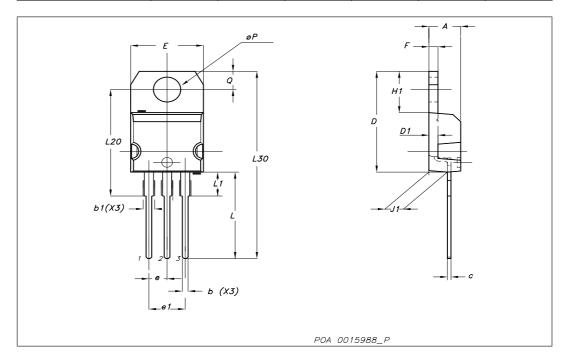



Figure 16. Unclamped inductive waveform

Figure 17. Switching time waveform


577

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com

TO-220 mechanical data

Dim		mm			inch	
Dim	Min	Тур	Max	Min	Тур	Max
Α	4.40		4.60	0.173		0.181
b	0.61		0.88	0.024		0.034
b1	1.14		1.70	0.044		0.066
С	0.49		0.70	0.019		0.027
D	15.25		15.75	0.6		0.62
D1		1.27			0.050	
E	10		10.40	0.393		0.409
е	2.40		2.70	0.094		0.106
e1	4.95		5.15	0.194		0.202
F	1.23		1.32	0.048		0.051
H1	6.20		6.60	0.244		0.256
J1	2.40		2.72	0.094		0.107
L	13		14	0.511		0.551
L1	3.50		3.93	0.137		0.154
L20		16.40			0.645	
L30		28.90			1.137	
ØP	3.75		3.85	0.147		0.151
Q	2.65		2.95	0.104		0.116

STP30NM30N Revision history

5 Revision history

Table 8. Revision history

Date	Revision	Changes
16-Apr-2007	1	First release

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2007 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com